

## **ARA-TEM 80**

Aimed for:

Bio, Medical Science, Material Science & Engineering Applications

ARA-TEM high-level technology and stability permits a full range of various applications

The ARA-TEM 80 transmission electron microscope (TEM) is tailored for use in:

Protein and cellular imaging

Topographical and morphological information

**Crystalline structures** 

**Biological studies** 

Characterization of shape and size of nanostructured materials

Study on multiphase and compound materials

Study on structural defects and porosity

## **KEY FEATURES**

**High contrast imaging** 

Electron accelerating voltages of 50 kV & 80 kV

High quality imaging of biological specimens.

Motorized and robust control of apertures

Motorized X-Y specimen stage

Thermionic tungsten electron source

Top entry sample holder



↑ Ferritin Standard gratings, Ted Pella, INC.





↑ ARA-TEM main control unit panel

←ARA-TEM full system



↑ ARA-TEM image of nanoparticles



 $\uparrow$  ARA-TEM image of nanorods

**Specifications** 

| 0.50 nm                                             |
|-----------------------------------------------------|
| 0.34 nm                                             |
|                                                     |
| 50kV, 80kV                                          |
| 8×10 <sup>-6</sup>                                  |
|                                                     |
| 150X to 400,000X                                    |
| 16                                                  |
|                                                     |
| >1.5 µm diameter, selected apertures (SAD)          |
| >3 µm diameter, selected by micro-beam illumination |
|                                                     |
| Pre-centered tungsten hairpin filament              |
| Electromagnetic beam alignment system               |
| Factory aligned double condenser system specimer    |
| Illumination adjustable from 3µm to 2mm diamete     |
|                                                     |
| 2.6mm                                               |
| 2.2mm                                               |
| 1.7mm                                               |
| <1 μm                                               |
|                                                     |
| 3 factory aligned electromagnetic projector lenses  |
| 6×10 <sup>-6</sup>                                  |
|                                                     |
| Rotary and turbo molecular by Leybold GmbH          |
| Pirani and cold cathode by Leybold GmbH             |
| High vacuum pressure down to 10 <sup>-6</sup> mbar  |
| ingii racaani pressare domi to to liibui            |
| Motorized                                           |
| Optional (details can be customized)                |
| Motorized                                           |
| MINIOLOTIZEU                                        |
| Available                                           |
|                                                     |
| Available                                           |
| Available Available                                 |
|                                                     |

## **Installation requirement**

- Environment temperature: 17 °C to 24 °C
- Weight distribution maximum: 1400 kg/m²
- Electrical connection: fixed connection to 3, 2 or single phase lines
- Power voltage: 220 V (+10 %, -15%)
- Frequency: 50 or 60 Hz
- Power consumption: 4.5 kVA, Full options 5.5 kVA
- Electrical connection: single phase for water cooler 220 V
- Cooling water required (depends on water cooling unit ordered)
- Double earth connection required
- Nitrogen ( $N_2$ ) supply with pressure of 0.2 bar
- Pre-vacuum pump outlet
- Liquid nitrogen LN<sub>2</sub>
- LAN connection for Remote Access Program for Interactive Diagnosis (RAPID)
- Door height: 2.20 meter
- Door width: 1.10 meter
- Ceiling height: >2.90 meter
- Floor space required for operation and servicing 5 meter × 6 meter

Ara Research HQ:

Pardis Science and Technology Park, Tehran, Iran Phone +98 21 76 250 187 Fax: +98 21 76 250 596

Email: info@ara-research.com

