

آشنايـ با آرإغؤوهش

سخن مدير عامل:
 را پشت سر گذاشته و در حال برنامه ريزى جهت توسعه علم فناورى بود، نانو فناورى به عنوان يكى از از اولويت هاي

كشور مطرح بود.

 و امكان تصويربر دارى نانومترى و تعيين خوان اصن مواني
 در فناورى نانو تشخيص و آن را جهت سا ساخت انتيا

اختصاص دارد.

 توسعه ادامه دارد، به لطف الهـى

 مجهز نمودن مر اكز علمى و تحقيقاتى به نانوسكوپ AFM آين ميدان را رابرای آنها گشودهايم

www.ara-research.com

Multi-Mode AFM

\&

برگز يده كشورى دومين مسابقه ملى علم تا عمل

دستكاه Multi-Mode، نانوسكوپی با قابليتهاى كسترده است. اين دستگاه بر اساس مُدهاى مورد پشتيبانى در چهار مدل طرا Full ،Advanced ،Standard
 اكر به دنبال استفاده از AFM در محيط هوا هستيد، Multi-Mode انتخابى مناسب است.

مشخْصات

www.ara-research.com

Head	H-M11
Scanner	S-C2
Controller	C-2MS, C-2MA, C-2MF, C-2MFP
Options	HighSpeed Module, Motorized Head H-A11, S-C3, S-C4, S-C5

محققين بدون ارائه شواهد عينى از يافته هاى خود نه قادر به اثبات آنها بوده و نه امكان اصلاح و بهبود دستاوردها را دارند.

 الكترونى مى باشنـنـ

 مقياس نانو تعيين و در اختيار محققين قرار دها دهد
به صورت كلى مىتوان عملكرد AFM را تا به امروز به بّ دسته تقسيم كرد:

 rـ- نانوليتوگرافى و جابجايى به منظور ايجاد تغييرات نانومترى در سطح نمونه به دو روش مكانيكى و و شيميايى

ADM Modes by Application

Nano Imaging

- Contact Mode
- Dynamic Mode
- Tapping Mode
-Frequency Modulation

Nano Properties Determination

- Magnetic Force Microscopy (MFM) - Electric Force Microscopy (EFM) - Conductive AFM (CAFM) - Kelvin Probe Force Microscopy (KPFM) . Piezoresponse Force Microscopy (PFM) - Lateral Force Microscopy (LFM) - Force Modulation Microscopy (FMM) - Force Spectroscopy

Nano Lithography and
Manipulation

- Chemical Nano-Lithography
- Mechanical Nano-Lithography

NanoVac

تصاوير با كيفيت برتر با تصويربرهارى در محيط خلاء، تحت اتمسفرهاى كنتر ل شلهو كازهاى مختلف

 نمودار I-V در يكى نقطه از سطح را با دقتى غيرقابل مقايسه با ديكر روشها بدست آيد.

Topo (left) and MFM (right) images of FeSiB Magnetic Ribbon

Islamic Azad University Science and Research Branch

 | Head | H-A11 |
| :--- | :--- | :--- | :--- | :--- |
| Scanner | S-C2 |
| Controller | C-2NFP |
| Options | $\begin{array}{l}\text { HighSpeed Module, } \\ \text { Motorized Head H-A11 } \\ \text { S-C3, S-C4, S-C5 }\end{array}$ |
| Vacuum Pump | $\begin{array}{l}\text { Compatible with well-known } \\ \text { pump e.g. Leybold TriVac }\end{array}$ |
| Vacuum Gauge | $\begin{array}{l}\text { Compatible with well-known } \\ \text { gauge e.g. Leybold Pirani gauge }\end{array}$ |

Bio-AFM

طرح برگزيده كشور ى در پنجممين مسابقه ملى علم تا عمل
 (با
 ماده زيستى، دارو و ... باشد) و سطح نمونه زيستى و مشاهده روند ييشروى آن، گشاينده افقى جدي

www.ara-research.com

Educational AF'M

HighSpeed AFM

وارد نمودن نخبَكان جوان به دنياى نانو در مدارس و پ夫وهشسراها

Ag coating on DVDD. D. Hamidi
Shahid Beheshti University
 Islamic Azad University
Pharmaceutical Sciences Branch

$\underset{\text { Latex. } M \text {. } Z \text {. Sarkhos. }}{\text { Ara }}$ Research Centre

Head	H-M11
Scanner	S-C1
Controller	C-2ES
Option	Motorized Head H-A11

اولين محصول دانش بنيان رونمايى شده توسط صندوق نوآورى و ش شكوفايى مشاهده رونل پيشرفت فر آيندها با استفادها ز سرعت بالآى تصويربردارى

 مى باشد. با HighSpeed AFM، سرعت مىتواند تا line/sec 100 افز ايش يابد و تصويربر دارى رادر ار ارتفاع ثابت انجام داد.

$\underset{\substack{\text { Albumin protein } \\ \text { Ms. }: \text {. Khateraha }}}{ }$
$\underset{\text { Ferdowsi University of Mashad }}{\text { Ms. F. Khakrah }}$

$\underset{\substack{\text { DNA network } \\ \text { D. M. . Loromeid }}}{\substack{\text { n }}}$
 Mr. H. Akbari, Ara Research Centre

-مشخخصات

Head	H-M11
Scanner	S-C2
Controller	C-2HFP
Options	Motorized Head H-A11 S-C3, S-C4, S-C5

Head:

- Laser diode maximum 3 mW , 670 nm with lens system
- Integrated 4-quadrant photo-detector with amplifier electronics
- Laser beam adjustment on the photo detector in two directions
- Built-in dither piezo for acoustical excitation in dynamic mode
- Color-camera with microscope optic with a direct view onto the cantilever: 640x480 pixels (VGA)

Model	H-Mil1	H-All	H-M21
Optical Adjustment	Manual	Auto	Manual
Approach method	Auto/Manual	Auto/Manual	Auto/Manual
Top view camera	20X up to	20X up to	20X up to
	200X zoom	200X zoom	200X zoom

Scanner:

Scanners of various $x-y$ range and z displacement are produced by Ara Research. Scanners features are listed in the following table

Model	S-C1	S-C2/S-NC2	S-NC3	S-C4	S-C5
Scan range XY	$30 \mu \mathrm{~m}$	$50 \mu \mathrm{~m}$	$80 \mu \mathrm{~m}$	$50 \mu \mathrm{~m}$	$80 \mu \mathrm{~m}$
Scan Range Z	$3.5 \mu \mathrm{~m}$	$3.5 \mu \mathrm{~m}$	$3.5 \mu \mathrm{~m}$	$7 \mu \mathrm{~m}$	$7 \mu \mathrm{~m}$
Resolution XY	2 nm	1 nm	1 nm	1 nm	1 nm
Resolution Z	0.3 nm	0.1 nm	0.1 nm	0.1 nm	0.1 nm
XY sample movement	6.5 mm				
Max Sample Thickness	7 mm				

Controller:

$2^{\text {nd }}$ generation of ARA-AFM controller improved in
1- Size reduction
2- Developing control capability
3 - Noise reduction and stability improvement
Controller model No. is detailed as follows:

Device Model	C-2宣回	Supported Modes
Educational		Standard
Multi model		Advanced
Bio $\mathrm{N}_{\text {anoVac }}$		Full
$\mathrm{HighSpeed}^{\text {d }}$		Full $\mathrm{Plus}^{\text {l }}$

Software:

Number of scanning channels	up to 8
Number of points per image	up to 1024×1024
Number of points per spectrum	up to 1024
Angular scanning	Available
Resume scan	Available
Oxidation lithography	Available
Multi-scan	Available
Operating System Program interface (SDK)	Microsoft Windows XP, Windows 7,Windows 8,Windows 10

Functional Modes

Contact (Static, DC)

Non-Contact (Dynamic, AC)

Tapping (Semi-Contact,
Intermittent-Contact)

Lateral Force Microscopy
(LFM)
Magnetic Force Microscopy
(MFM)
Electric Force Microscopy
(EFM)
Force Spectroscopy
Chemical Nano-Lithography

Mechanical Nano-Lithography
Force Modulation Microscopy (FMM)

Kelvin Probe Force Microscopy

(KPFM)

Conductive AFM (CAFM)

Piezoresponse Force Microscopy

(PFM)

Frequency Modulation (FM)*

Description

-حركت تيپ در هر دو ناحيه جاذبه و دافعه
هـ مناسِب براى تصويركيرى از نمونههاى نرم به منظور
عدمرآسيب رسانى به آنها
ه ثبت ميزان يِيحش كانتيلور در مُد تماسى و ساخت
تررسير خوام اساس آنطكاكي و تشخص مرزهاي مواد
مختلف در سطح نمونه

- تشناطيسى نور مُد غيرتماسناطيسى نمونه توسط تيب
- تشخيص نواحى داراى شار الكتريكى روى سطح
نمونه توسط تيپ هادى
ه اندازهكيرى نيروهاى بين اتمرهاى نوك تيپ و سطح نمونه با كاربر دير كسترده در تعيين خواص مكانيانيكى
مواد مانند مدول الاستيك و نيروى چسبندگى .
eايجاد تغيير شيميايى در نقاط انتخاب شده روى سطح
نمونه براى مثال آكسيد نمودن مولكول هاي سطح
نمونه با اعمال اختلاف پتانسيل در محيط هوا
ه ايجاد تغييرات مكانيكى مانند حكاكى و ايجاد خراش
بر روى سطح نمونه
جهت دريافت مشخصات الاستيك مواد و تشخيص
مرزهاى مواد مختلف
- حذاون شيروهافتى الكترومغناطيسى مزاحم و دريافت
تصاوير شفافتر
- يافتن خواص الكتر يكى مواد و تابع كار اتمهاى
سطح نمونه
تصوير كيرى از تغييرات هدايت الكتريكى نواحى
مختلف سطح نمونه
ه بدست آوردن منحنى I-V I و برخى از مشخصه هاى
كوانتمى اتمرهاى سطح.

[^0]

[^0]: إستفاده از مدولاسانون فر كانس بجاي مدولاسيون

 Qاكتور
 *Only available in NanoVac

