DELAYLINE AMPLIFIER

Features:

- Delay-line shaping for energy and time spectroscopy
- Ideal for n-gamma discrimination by
- Excellent high-counting rate performance
- Optimum timing capabilities
- Selectable integration time constants

Description:

The CFP Model DLA2012 Delay Line Shaping Amplifier is intended for energy and time spectroscopy with scintillation detectors. It can also be used with proportional counters, semi-conductor detectors, and position-sensitive proportional counters. Its delay-line shaped output signal is particularly well suited for high-counting rate and timing applications. This particular type of output signal offers a more rapid baseline recovery than is possible with semi-Gaussian shaping amplifiers. The Model DLA2012 provides excellent timing capabilities, either for leading-edge or zero-crossing timing techniques, particularly when it is used with an CFP Model 2013 Pulse- Shape Analyzer OR 2038 Timing Single-Channel Analyzer. Double-delay-line shaping exhibits less timing jitter when compared with either the classical RC-shaping network or active-filter networks, primarily due to the fast rise time and fall time of the double-delay-line shaped output pulse.

Short Specifications:

GAIN RANGE 7-position Coarse Gain selection from 10 through 1000 and single turn Fine Gain control from 0.3 through 1; total gain is the product of Coarse and Fine Gain settings.

SHAPING FILTER Front-panel switch permits selection of integration time constant with $|=0.04, 0.1, \text{ or } 0.25 \mu \text{s}$ (40, 100, or 250 ns).

INTEGRAL NONLINEARITY $\leq \pm 0.05\%$.

NOISE \leq 20µVrms referred to input using 0.25µs Integrate and maximum Gain of 1000; \leq 25µV for Gain = 50; \leq 60µV for Gain = 10.

CROSSOVER WALK For constant gain, walk $<\pm 1$ ns for 20:1 dynamic range; $<\pm 2$ ns for 50:1; $<\pm 2.5$ ns for 100:1. Crossover shifts $<\pm 4$ ns for any adjacent Coarse Gain switch settings.

COUNT RATE STABILITY A pulser peak at 85% of analyzer range shifts $<\!0.2\%$ in the presence of 0 to 10s random counts/s from a $_{137}\text{Cs}$ source with its peak stored at 75% of the analyzer range.

TEMPERATURE INSTABILITY Gain $\delta \pm 0.01\%$ °C, 0 to 50°C.

DC Level $\leq \pm 0.1$ mV/°C, 0 to 50°C.

